मराठी

The amplitude of sin π5+i(1-cos π5) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.

पर्याय

  • `(2pi)/5`

  • `pi/5`

  • `pi/15`

  • `pi/10`

MCQ
रिकाम्या जागा भरा

उत्तर

The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is `underlinebb(pi/10)`.

Explanation:

Here, rcosθ = `sin (pi/5)` and rsinθ = `1 - cos  pi/5`

Therefore, tanθ = `(1 - cos  pi/5)/(sin  pi/5)`

= `(2sin^2  (pi/10))/(2sin (pi/10).cos(pi/10))`

⇒ tanθ = `tan(pi/10)` i.e., θ = `pi/10`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 33 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×