Advertisements
Advertisements
प्रश्न
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
उत्तर
Let z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)
Where r1 = |z1|, arg(z1) = θ1, r2 = |z2|, arg(z2) = θ2.
We have |z1 + z2| = |z1| + |z2|
= `|r_1(cos theta_1 + cos theta_2) + r_2 (cos theta_2 + sin theta_2)|`
= r1 + r2
= `r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2)`
= (r1 + r2)2
⇒ `cos(theta_1 - theta_2)` = 1
⇒ `theta_1 - theta_2` i.e. argz1 = argz2
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form `sqrt3 + i`
Convert the given complex number in polar form: i
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
arg(z) + arg`barz (barz ≠ 0)` is ______.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
The value of arg (x) when x < 0 is ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.