हिंदी

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.

योग

उत्तर

Let z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)

Where r1 = |z1|, arg(z1) = θ1, r2 = |z2|, arg(z2) = θ2.

We have |z1 + z2| = |z1| + |z2|

= `|r_1(cos theta_1 + cos theta_2) + r_2 (cos theta_2 + sin theta_2)|`

= r1 + r2

= `r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2)`

= (r1 + r2)2

⇒ `cos(theta_1 - theta_2)` = 1

⇒ `theta_1 - theta_2` i.e. argz1 = argz2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 7 | पृष्ठ ८०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×