Advertisements
Advertisements
प्रश्न
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let z1 = x1 + y1i and z2 = x2 + y2i
⇒ |z1 + z2| = |z1| + |z2|
⇒ |x1 + y1i + x2 + y2i| = |x1 + y1i| + |x2 + y2i|
⇒ |(x1 + x2) + (y1 + y2)i| = |(x1 + y1i)| + |(x2 + y2i)|
⇒ `sqrt((x_1 + x_2)^2 + (y_1 + y_2)^2) = sqrt(x_1^2 + y_1^2) + sqrt(x_2^2 + y_2^2)`
Squaring both sides, we get
⇒ `(x_1 + x_2)^2 + (y_1 + y_2)^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 + 2sqrt((x_1^2 + y_1^2)(x_2^2 + y_2^2))`
⇒ `x_1^2 + x_2^2 + 2x_1x_2 + y_1^2 + 2y_1y_2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 + 2sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`
⇒ `2x_1x_2 + 2y_1y_2 = 2sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`
⇒ `x_1x_2 + y_1y_2 = sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`
Again squares on both sides, we get
`x_1^2x_2^2 + y_1^2y_2^2 + 2x_1y_1x_2y_2 = x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2`
⇒ `2x_1y_1x_2y_2 = x_1^2y_2^2 + x_2^2y_1^2`
⇒ `x_1^2y_2^2 + x_2^2y_1^2 - 2x_1y_1x_2y_2` = 0
⇒ `(x_1y_2 - x_2y_2)^2` = 0
⇒ `x_1y_2 - x_2y_1` = 0
⇒ `x_1y_2 = x_2y_1`
⇒ `x_1/y_1 = x_2/y_2`
⇒ `y_1/x_1 = y_2/x_2`
⇒ arg (z1) = arg (z2)
⇒ arg (z1) – arg (z2) = 0
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+3i)/(1-2i)`
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
Find principal argument of `(1 + i sqrt(3))^2`.
The value of arg (x) when x < 0 is ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.