English

State True or False for the following: Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0. - Mathematics

Advertisements
Advertisements

Question

State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

Let z1 = x1 + y1i and z2 = x2 + y2i

⇒ |z1 + z2| = |z1| + |z2|

⇒ |x1 + y1i + x2 + y2i| = |x1 + y1i| + |x2 + y2i|

⇒ |(x1 + x2) + (y1 + y2)i| = |(x1 + y1i)| + |(x2 + y2i)|

⇒ `sqrt((x_1 + x_2)^2 + (y_1 + y_2)^2) = sqrt(x_1^2 + y_1^2) + sqrt(x_2^2 + y_2^2)`

Squaring both sides, we get

⇒ `(x_1 + x_2)^2 + (y_1 + y_2)^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 + 2sqrt((x_1^2 + y_1^2)(x_2^2 + y_2^2))`

⇒ `x_1^2 + x_2^2 + 2x_1x_2 + y_1^2 + 2y_1y_2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 + 2sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`

⇒ `2x_1x_2 + 2y_1y_2 = 2sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`

⇒ `x_1x_2 + y_1y_2 = sqrt(x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2)`

Again squares on both sides, we get

`x_1^2x_2^2 + y_1^2y_2^2 + 2x_1y_1x_2y_2 = x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2`

⇒ `2x_1y_1x_2y_2 = x_1^2y_2^2 + x_2^2y_1^2`

⇒ `x_1^2y_2^2 + x_2^2y_1^2 - 2x_1y_1x_2y_2` = 0

⇒ `(x_1y_2 - x_2y_2)^2` = 0

⇒ `x_1y_2 - x_2y_1` = 0

⇒ `x_1y_2 = x_2y_1`

⇒ `x_1/y_1 = x_2/y_2`

⇒ `y_1/x_1 = y_2/x_2`

⇒ arg (z1) = arg (z2)

⇒ arg (z1) – arg (z2) = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 93]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 26.(vii) | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×