Advertisements
Advertisements
Question
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
Solution
Let z1 = r1(cosθ1 + isinθ1)
And z2 = r2(cosθ2 + isinθ2) are polar form of two complex numbers z1 and z2.
Given that: |z1| = |z2|
⇒ r1 = r2 ......(i)
And arg(z1) + arg(z2) = π
⇒ θ1 + θ2 = π
⇒ θ1 = π – θ2
Now z1 = r1[cos(π – θ2) + isin(π – θ2)]
⇒ z1 = r1[–cosθ2 + isinθ2]
⇒ z1 = –r1(cosθ2 – isinθ2) ......(i)
z2 = r2[cosθ2 + isinθ2]
`barz_2` = r1[cosθ2 – isinθ2] ......[∵ r1 = r2] .....(ii)
From equation (i) and (ii) we get,
z1 = `-barz_2`.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+3i)/(1-2i)`
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
The amplitude of `sin pi/5 + i(1 - cos pi/5)` is ______.
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
The value of arg (x) when x < 0 is ______.