English

Convert the Following in the Polar Form: (1+3i)/(1-2i) - Mathematics

Advertisements
Advertisements

Question

Convert the following in the polar form:

`(1+3i)/(1-2i)`

Sum

Solution

Let cos θ = –1 and r sin θ = 1

On squaring and adding, we obtain

r2 (cos2 θ + sin2 θ) = 1 + 1
r2 (cos2 θ + sin2 θ) = 2

⇒ r2 = 2                        [cos2 θ + sin2 θ = 1]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [Page 112]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 5.2 | Page 112

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×