Advertisements
Advertisements
Question
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
Solution
Let z = x + iy,
Then `(2z + 1)/(iz + 1) = (2(x + iy) + 1)/(i(x + iy) + 1)`
= `((2x + 1) + i2y)/((1 - y) + ix)`
= `({(2x + 1) + i2y})/({(1 - y) + ix}) xx ({(1 - y) - ix})/({(1 - y) - ix})`
= `((2x + 1 - y) + i(2y - 2y^2 - 2x^2 - x))/(1 + y^2 - 2y + x^2)`
Thus `"Im"((2z + 1)/(iz + 1)) = (2y - 2y^2 - 2x^2 - x)/(1 + y^2 - 2y + x^2)`
But `"Im"((2z + 1)/(iz + 1))` = –2 .....(Given)
So `(2y - 2y^2 - 2x^2 - x)/(1 + y^2 - 2y + x^2)` = –2
⇒ 2y – 2y2 – 2x2 – x = –2 – 2y2 + 4y – 2x2
i.e., x + 2y – 2 = 0, which is the equation of a line.
APPEARS IN
RELATED QUESTIONS
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
The amplitude of `sin pi/5 + i(1 - cos pi/5)` is ______.
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
arg(z) + arg`barz (barz ≠ 0)` is ______.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
The value of arg (x) when x < 0 is ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.