Advertisements
Advertisements
प्रश्न
If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.
उत्तर
Let z = x + iy,
Then `(2z + 1)/(iz + 1) = (2(x + iy) + 1)/(i(x + iy) + 1)`
= `((2x + 1) + i2y)/((1 - y) + ix)`
= `({(2x + 1) + i2y})/({(1 - y) + ix}) xx ({(1 - y) - ix})/({(1 - y) - ix})`
= `((2x + 1 - y) + i(2y - 2y^2 - 2x^2 - x))/(1 + y^2 - 2y + x^2)`
Thus `"Im"((2z + 1)/(iz + 1)) = (2y - 2y^2 - 2x^2 - x)/(1 + y^2 - 2y + x^2)`
But `"Im"((2z + 1)/(iz + 1))` = –2 .....(Given)
So `(2y - 2y^2 - 2x^2 - x)/(1 + y^2 - 2y + x^2)` = –2
⇒ 2y – 2y2 – 2x2 – x = –2 – 2y2 + 4y – 2x2
i.e., x + 2y – 2 = 0, which is the equation of a line.
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: – 1 – i
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
arg(z) + arg`barz (barz ≠ 0)` is ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
The value of arg (x) when x < 0 is ______.