Advertisements
Advertisements
प्रश्न
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
उत्तर
Let z = r1 (cosθ1 + isinθ1) and w = r2 (cosθ2 + isinθ2)
zw = r1r2 [(cosθ1 + isinθ1)] [(cosθ2 + isinθ2)]
|zw| = r1r2 = 1
Now arg(z) – arg(w) = `pi/2`
θ1 – θ2 = `pi/2`
⇒ arg `(z/w) = pi/2`
`barzw` = r1 (cosθ1 – isinθ1) r2 (cosθ2 + isinθ2)
= r1 r2 [cosθ1 cosθ2 + icosθ1 sinθ2 – isinθ1 cosθ2 – i2 sinθ1 sinθ2]
= r1 r2 [(cosθ1 cosθ2 + sinθ1 sinθ2) + i(cosθ1 sinθ2 – sinθ1 cosθ2)]
= r1 r2 [cos(θ2 – θ1) + isin(θ2 – θ1)]
= `r_1r_2 [cos((-pi)/2) + i sin((-pi)/2)]`
= `r_1r_2 [cos pi/2 - i sin pi/2]`
= 1 .....[0 – i]
Here `barzw` = –i.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form `sqrt3 + i`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
The locus of z satisfying arg(z) = `pi/3` is ______.
The amplitude of `sin pi/5 + i(1 - cos pi/5)` is ______.
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
arg(z) + arg`barz (barz ≠ 0)` is ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
The value of arg (x) when x < 0 is ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.