हिंदी

Let z1 and z2 be two complex numbers such that z¯1+iz¯2 = 0 and arg(z1 z2) = π. Then find arg (z1). - Mathematics

Advertisements
Advertisements

प्रश्न

Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).

योग

उत्तर

Given that `barz_1 + ibarz_2` = 0

⇒ z1 = iz2

i.e., z2 = –iz1

Thus arg (z1 z2) = argz1 + arg(–iz1) = π

⇒ arg`(-iz_1^2)` = π

⇒ arg(–i) + arg`(z_1^2)` = π

⇒ arg(–i) + 2arg (z1) = π

⇒ `(-pi)/2 + 2` arg(z1) = π

⇒ arg(z1) = `(3pi)/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 6 | पृष्ठ ८०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


If |z| = 2 and arg(z) = `pi/4`, then z = ______.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×