हिंदी

Write the complex number z = 1-icos π3+isin π3 in polar form. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.

योग

उत्तर

z = `(1 - i)/(cos  pi/3 + i sin  pi/3)`

= `(sqrt2[1/sqrt2 - i1/sqrt2])/(cos  pi/3 + isin  pi/3) =(sqrt2[cos(-pi/4) + isin(-pi/4)])/(cos  pi/3 + isin  pi/3)`

= `sqrt2[cos(-pi/4 - pi/3) + isin(-pi/4 - pi/3)]`

= `sqrt2[cos(-(7pi)/12) + isin(-(7pi)/12)]`

= `-sqrt2[cos  (5pi)/12 + isin  (5pi)/12]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 23 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+3i)/(1-2i)`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


The locus of z satisfying arg(z) = `pi/3` is ______.


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×