Advertisements
Advertisements
प्रश्न
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
उत्तर
Let z = x + iy
Given that: arg`((z - 1)/(z + 1)) = pi/4`
⇒ arg(z – 1) – arg(z + 1) = `pi/4` ......`[because "arg"(z_1) - "arg" (z_2) = "arg"z_1/z_2]`
⇒ arg[x + iy – 1] – arg[x + iy + 1] = `pi/4`
⇒ arg[(x – 1) + iy] – arg[(x + 1) + iy] = `pi/4`
⇒ `tan^-1 y/(x - 1) - tan^-1 y/(x + 1) = pi/4` ......`[because "arg" (x + yi) = tan^-1 y/x]`
⇒ `tan^-1 ((y/(x - 1) - y/(x + 1))/(1 + y/(x - 1) xx y/(x + 1))) = pi/4`
⇒ `(xy + y - xy + y)/(x^2 - 1 + y^2) = tan pi/4`
⇒ `(2y)/(x^2 + y^2 - 1)` = 1
⇒ x2 + y2 – 1 = 2y
⇒ x2 + y2 – 2y – 1 = 0
Which is a circle.
Hence, z lies on a circle.
APPEARS IN
संबंधित प्रश्न
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 + i
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
arg(z) + arg`barz (barz ≠ 0)` is ______.
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
The value of arg (x) when x < 0 is ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.