हिंदी

If the real part of z¯+2z¯-1 is 4, then show that the locus of the point representing z in the complex plane is a circle. - Mathematics

Advertisements
Advertisements

प्रश्न

If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.

योग

उत्तर

Let z = x + iy

∴ `barz` = x – iy

So`(barz + 2)/(barz - 1) = (x - iy + 2)/(x - iy - 1)`

= `((x + 2) - iy)/((x - 1) - iy)`

= `((x + 2) - iy)/((x - 1) - iy) xx ((x - 1) + iy)/((x - 1) + iy)`

= `((x + 2)(x - 1) + (x + 2)yi - (x - 1)yi - i^2y^2)/((x - 1)^2 - i^2y^2)`

= `(x^2 + 2x - x - 2 + (x + 2 - x + 1)yi + y^2)/((x - 1)^2 + y^2)`

= `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2) + (3y)/((x - 1)^2 + y^2)i`

Real part = 4

∴ `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2)` = 4

⇒ x2 + y2 + x – 2 = 4[(x – 1)2 + y2]

⇒ x2 + y2 + x – 2 = 4[x2 + 1 – 2x + y2]

⇒ x2 + y2 + x – 2 = 4x2 + 4 – 8x + 4y2

⇒ x2 – 4x2 + y2 – 4y2 + x + 8x – 2 – 4 = 0

⇒ – 3x2 – 3y2 + 9x – 6 = 0

⇒ x2 + y2 – 3x + 2 = 0

Which represents a circle.

Hence, z lies on a circle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 9 | पृष्ठ ९१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`


Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i


Write the conjugates of the following complex number:

5i


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


Answer the following:

If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


The value of `(z + 3)(barz + 3)` is equivalent to ______.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×