Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
उत्तर
`("i"^65 + 1/"i"^145)`
= `|("i"^4)^16*"i" + 1/(("i"^4)^36*"i")|`
= `"i" + 1/"i"`
= `("i"^2 + 1)/"i"`
= `(-1 + 1)/"i"`
= 0
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the principal value of amplitude of 1 – i?
1 + i2 + i4 + i6 + ... + i2n is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If |z + 1| = z + 2(1 + i), then find z.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Multiplicative inverse of 1 + i is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`