हिंदी

If |z + 1| = z + 2(1 + i), then find z. - Mathematics

Advertisements
Advertisements

प्रश्न

If |z + 1| = z + 2(1 + i), then find z.

योग

उत्तर

Given that: |z + 1| = z + 2(1 + i)

Let z = x + iy

So, |x + iy + 1| = (x + iy) + 2(1 + i)

⇒ |(x + 1) + iy| = x + iy + 2 + 2i

⇒ |(x + 1) + iy| = (x + 2) + (y + 2)i

⇒ `sqrt((x + 1)^2 + y^2)` = (x + 2) + (y + 2)i   ......`[because |x + iy| = sqrt(x^2 + y^2)]`

Squaring both sides, we get,

(x + 1)2 + y2 = (x + 2)2 + (y + 2)2 .i2 + 2(x + 2)(y + 2)i

⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i

Comparing the real and imaginary parts, we get

x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y and 2(x + 2)(y + 2) = 0

⇒ 2y2 – 2x + 4y + 1 = 0   ......(i)

And (x + 2)(y + 2) = 0  .....(ii)

x + 2 = 0 or y + 2 = 0

∴ x = –2 or y = –2

Now put x = –2 in equation (i).

2y2 – 2 × (–2) + 4y + 1 = 0

⇒ 2y2 + 4 + 4y + 1 = 0 

⇒ y2 + 4y + 5 = 0

b2 – 4ac = (4)2 – 4 × 2 × 5

16 – 40 = –24 < 0 no real roots.

Put y = –2 in equation (i).

2(–2)2 – 2x + 4(–2) + 1 = 0

8 – 2x – 8 + 1 = 0

⇒ x = `1/2` and y = –2

Hence, z = x + iy = `(1/2 - 2i)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 12 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that 1 + i10 + i20 + i30 is a real number.


Find the value of i49 + i68 + i89 + i110 


Select the correct answer from the given alternatives:

The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


Evaluate: (1 + i)6 + (1 – i)3 


Locate the points for which 3 < |z| < 4.


State true or false for the following:

The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.


State true or false for the following:

If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.


What is the reciprocal of `3 + sqrt(7)i`.


If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).


The value of `sqrt(-25) xx sqrt(-9)` is ______.


Multiplicative inverse of 1 + i is ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.


State True or False for the following:

Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


The value of `(z + 3)(barz + 3)` is equivalent to ______.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`


Show that `(-1 + sqrt3 i)^3` is a real number.


Find the value of `sqrt(-3) xx sqrt(-6)`


Simplify the following and express in the form a + ib.

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×