Advertisements
Advertisements
प्रश्न
If |z + 1| = z + 2(1 + i), then find z.
उत्तर
Given that: |z + 1| = z + 2(1 + i)
Let z = x + iy
So, |x + iy + 1| = (x + iy) + 2(1 + i)
⇒ |(x + 1) + iy| = x + iy + 2 + 2i
⇒ |(x + 1) + iy| = (x + 2) + (y + 2)i
⇒ `sqrt((x + 1)^2 + y^2)` = (x + 2) + (y + 2)i ......`[because |x + iy| = sqrt(x^2 + y^2)]`
Squaring both sides, we get,
(x + 1)2 + y2 = (x + 2)2 + (y + 2)2 .i2 + 2(x + 2)(y + 2)i
⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i
Comparing the real and imaginary parts, we get
x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y and 2(x + 2)(y + 2) = 0
⇒ 2y2 – 2x + 4y + 1 = 0 ......(i)
And (x + 2)(y + 2) = 0 .....(ii)
x + 2 = 0 or y + 2 = 0
∴ x = –2 or y = –2
Now put x = –2 in equation (i).
2y2 – 2 × (–2) + 4y + 1 = 0
⇒ 2y2 + 4 + 4y + 1 = 0
⇒ y2 + 4y + 5 = 0
b2 – 4ac = (4)2 – 4 × 2 × 5
16 – 40 = –24 < 0 no real roots.
Put y = –2 in equation (i).
2(–2)2 – 2x + 4(–2) + 1 = 0
8 – 2x – 8 + 1 = 0
⇒ x = `1/2` and y = –2
Hence, z = x + iy = `(1/2 - 2i)`.
APPEARS IN
संबंधित प्रश्न
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of i49 + i68 + i89 + i110
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
Evaluate: (1 + i)6 + (1 – i)3
Locate the points for which 3 < |z| < 4.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the reciprocal of `3 + sqrt(7)i`.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
The value of `sqrt(-25) xx sqrt(-9)` is ______.
Multiplicative inverse of 1 + i is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`