Advertisements
Advertisements
प्रश्न
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
उत्तर
We have `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy
⇒ `[(1 + i)/(1 - i) xx (1 + i)/(1 + i)]^3 - [((1 - i)(1 - i))/((1 + i)(1 - i))]^3` = x + iy
⇒ `[(1 + i^2 + 2i)/(1 - i^2)]^3 - [(1 + i^2 - 2i)/(1 - i^2)]^3` = x + iy
⇒ `[(1 - 1 + 2i)/(1 + 1)]^3 - [(1 - 1 - 2i)/(1 + 1)]^3` = x + iy
⇒ `((2i)/2)^3 - ((-2i)/2)^3` = x + iy
⇒ (i)3 – (–i)3 = x + iy
⇒ i2.i + i2.i = x + iy
⇒ –i – i = x + iy
⇒ 0 – 2i = x + iy
Comparing the real and imaginary parts,
We get x = 0, y = –2
Hence, (x, y) = (0, –2).
APPEARS IN
संबंधित प्रश्न
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
3 + i
Show that 1 + i10 + i100 − i1000 = 0
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The value of (2 + i)3 × (2 – i)3 is ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`