Advertisements
Advertisements
प्रश्न
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
उत्तर
x = 1 – 4i
∴ x – 1 = – 4i
∴ (x – 1)2 = 16i2
∴ x2 – 2x + 1 = – 16 ...[∵ i2 = – 1]
∴ x2 – 2x + 17 = 0 ...(i)
x – 1
`x^2 – 2x + 17")"overline(x^3 - 3x^2 + 19x - 20)"`
x3 – 2x2 + 17x
– + –
– x2 + 2x – 20
– x2 + 2x – 17x
– + –
– 3
∴ x3 – 3x2 + 19x – 20
= (x2 – 2x + 17) (x – 1) – 3
= 0(x – 1) – 3 ...[From (i)]
= 0 – 3
∴ x3 – 3x2 + 19x – 20 = – 3
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of i49 + i68 + i89 + i110
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
Evaluate the following:
i35