Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
उत्तर
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
= `(3("i"^4*"i") + 2("i"^4*"i"^3) + ("i"^4)^2*"i")/("i"^4*"i"^2 + 2("i"^4)^2 + 3("i"^2)^9`
= `(3(1)* "i" + 2(1)(-"i") + (1)^2*"i")/((1)(-1) + 2(1)^2 + 3(-1)^9` ...[∵ i2 = – 1, i3 = – i, i4 = 1]
= `(3"i" - 2"i" + "i")/(-1 + 2 - 3)`
= `(2"i")/(-2)`
= – i
= 0 – i
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Write the conjugates of the following complex number:
3 + i
Evaluate : `("i"^37 + 1/"i"^67)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
What is the principal value of amplitude of 1 – i?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
1 + i2 + i4 + i6 + ... + i2n is ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Multiplicative inverse of 1 + i is ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35