Advertisements
Advertisements
प्रश्न
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
उत्तर
We have |z1| = |z2| = ... = |zn| = 1
⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1 ......(i)
⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1 .....`[because zbarz = |z|^2]`
⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`
L.H.S. |z1 + z2 + z3 + ... + zn|
= `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`
= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|` ......`[zbarz = |z|^2]`
= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|` ......[Using (i)]
= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|` .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`
= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|` ....`[because |z| = |barz|]`
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Find the value of i49 + i68 + i89 + i110
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Evaluate: `("i"^37 + 1/"i"^67)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Locate the points for which 3 < |z| < 4.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Which of the following is correct for any two complex numbers z1 and z2?
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35