हिंदी

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = |1z1+1z2+1z3+...+1zn|. - Mathematics

Advertisements
Advertisements

प्रश्न

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.

योग

उत्तर

We have |z1| = |z2| = ... = |zn| = 1

⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1  ......(i)

⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1  .....`[because zbarz = |z|^2]`

⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`

L.H.S. |z1 + z2 + z3 + ... + zn|

= `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`

= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|`  ......`[zbarz = |z|^2]`

= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|`  ......[Using (i)]

= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|`  .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`

= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`  ....`[because |z| = |barz|]`

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 19 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Write the conjugates of the following complex number:

`-sqrt(-5)`


Find the value of i49 + i68 + i89 + i110 


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


Evaluate: `("i"^37 + 1/"i"^67)`


If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


Locate the points for which 3 < |z| < 4.


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?


If |z + 1| = z + 2(1 + i), then find z.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


Which of the following is correct for any two complex numbers z1 and z2?


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Find the value of `sqrt(-3) xx sqrt(-6)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×