Advertisements
Advertisements
प्रश्न
If `((1 + i)/(1 - i))^x` = 1, then ______.
विकल्प
x = 2n + 1
x = 4n
x = 2n
x = 4n + 1, where n ∈ N
उत्तर
If `((1 + i)/(1 - i))^x` = 1, then x = 4n.
Explanation:
Given that: `((1 + i)/(1 - i))^x` = 1
⇒ `(((1 + i)(1 + i))/((1 - i)(1 - i)))^x` = 1
⇒ `((1 + i^2 + 2i)/(1 - i^2))^x` = 1
⇒ `((1 - 1 + 2i)/(1 + 1))^x` = 1
⇒ `((2i)/2)^x` = 1
⇒ (i)x = (i)4n
⇒ x = 4n, n ∈ N
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Show that 1 + i10 + i20 + i30 is a real number.
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Which of the following is correct for any two complex numbers z1 and z2?
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a + ib = c + id, then ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Show that `(-1 + sqrt3i)^3` is a real number.