Advertisements
Advertisements
प्रश्न
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
उत्तर
2x + i9y (2 + i) = xi7 +10i16
i9 = i8 x i = (i2)4i = (– 1)4i = i
i7 = i6 x i = (i2)3i = (–1)3i = – i
i16 = (i2)8 = (– 1)8 = 1
∴ given equation becomes
2x + iy(2 + i) = – xi + 10
∴ 2x + 2iy + i2y = – xi + 10
∴ 2x + 2iy – y = – xi + 10 ...[∵ i2 = – 1]
∴ 2x + 2iy – y + xi – 10 = 0
∴ (2x – y – 10) + (x + 2y)i = 0
∴ (2x – y) + (x + 2y)i = 10 + 0i
Equating the real and imaginary parts separately, we get,
2x – y = 10 ...(1)
and x + 2y = 0 ...(2)
Multiplying equation (1) by 2, we get, 4x – 2y = 20
Adding this equation with equation (2), we get,
5x = 20
∴ x = 4
∴ from (2), 4 + 2y = 0
∴ 2y = – 4
∴ y = – 2
Hence, x = 4, y = – 2.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Write the conjugates of the following complex number:
5i
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
Solve the equation |z| = z + 1 + 2i.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If a + ib = c + id, then ______.
If z is a complex number, then ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`