Advertisements
Advertisements
प्रश्न
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
उत्तर
(a + ib) = `(1 + "i")/(1 - "i") = (1 + "i")^2/((1 - "i")(1 + "i"))`
∴ a + bi = `(1 + 2"i" + "i"^2)/(1 - "i"^2)`
= `(1 + 2"i" - 1)/(1 - (- 1))` ...[∵ i2 = – 1]
= `(2"i")/2`
= i
∴ a + bi = 0 + i
Equating real and imaginary parts, we get
a = 0 and b = 1
∴ a2 + b2 = 02 + 12 = 1
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Find the value of i49 + i68 + i89 + i110
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Show that 1 + i10 + i100 − i1000 = 0
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Locate the points for which 3 < |z| < 4.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the reciprocal of `3 + sqrt(7)i`.
What is the principal value of amplitude of 1 – i?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
Multiplicative inverse of 1 + i is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
Which of the following is correct for any two complex numbers z1 and z2?
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a + ib = c + id, then ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`