Advertisements
Advertisements
प्रश्न
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
उत्तर
`((1+i)/(1-i))^m` = 1,
⇒ `((1+i)/(1-i) xx (1 + i)/(1 + i))^m` = 1,
⇒ `((1+ i)^2/(1^2 + 1^2))^m = 1`
⇒ `((1^2 + i^2 + 2i)/2)^2 = 1`
⇒ `((1 - 1 + 2i)/2)^2 = 1`
⇒ `((2i)/2)^m = 1`
⇒ `i^m = 1`
∴ m = 4k, where k is an integral
Therefore, the smallest positive integral is 1
Therefore, the least positive integral value of m is 4 (4 x 1).
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
Evaluate: (1 + i)6 + (1 – i)3
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
1 + i2 + i4 + i6 + ... + i2n is ______.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If |z + 1| = z + 2(1 + i), then find z.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`