हिंदी

The point represented by the complex number 2 – i is rotated about origin through an angle π2 in the clockwise direction, the new position of point is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.

विकल्प

  • 1 + 2i

  • –1 – 2i

  • 2 + i

  • –1 + 2i

MCQ
रिक्त स्थान भरें

उत्तर

The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is –1 – 2i.

Explanation:

Given that: z = 2 – i

If z rotated through an angle of `pi/2` about the origin in clockwise direction.

Then the new position = `z.e^(-(pi/2))`

= `(2 - i) e^(-(pi/2))`

= `(2 - i)[cos((-pi)/2) + i sin ((-pi)/2)]`

= (2 – i)(0 – i)

= –1 – 2i

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 42 | पृष्ठ ९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the following expression in the form of a + ib.

`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


Show that 1 + i10 + i20 + i30 is a real number.


Write the conjugates of the following complex number:

5i


Find the value of i + i2 + i3 + i4 


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Find the value of x and y which satisfy the following equation (x, y ∈ R).

`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.


What is the reciprocal of `3 + sqrt(7)i`.


What is the principal value of amplitude of 1 – i?


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Evaluate the following:

i35


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×