English

The point represented by the complex number 2 – i is rotated about origin through an angle π2 in the clockwise direction, the new position of point is ______. - Mathematics

Advertisements
Advertisements

Question

The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.

Options

  • 1 + 2i

  • –1 – 2i

  • 2 + i

  • –1 + 2i

MCQ
Fill in the Blanks

Solution

The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is –1 – 2i.

Explanation:

Given that: z = 2 – i

If z rotated through an angle of `pi/2` about the origin in clockwise direction.

Then the new position = `z.e^(-(pi/2))`

= `(2 - i) e^(-(pi/2))`

= `(2 - i)[cos((-pi)/2) + i sin ((-pi)/2)]`

= (2 – i)(0 – i)

= –1 – 2i

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 96]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 42 | Page 96

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the multiplicative inverse of the complex number:

4 – 3i


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of i + i2 + i3 + i4 


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


Find the value of x and y which satisfy the following equation (x, y ∈ R).

`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


State true or false for the following:

The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.


The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


Solve the equation |z| = z + 1 + 2i.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


Multiplicative inverse of 1 + i is ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3 i)^3` is a real number.


Find the value of `sqrt(-3) xx sqrt(-6)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×