Advertisements
Advertisements
Question
Find the multiplicative inverse of the complex number:
4 – 3i
Solution
Multiplicative inverse of `4 - 3i = 1/(4-3i)`
\[ z = 4 - 3i\]
\[\text { Then,} \frac{1}{z} = \frac{1}{4 - 3i} \times \frac{4 + 3i}{4 + 3i}\]
\[ = \frac{4 + 3i}{16 - 9 i^2}\]
\[ = \frac{4 + 3i}{25}\]
\[ = \frac{4}{25} + \frac{3}{25}i\]
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Find the value of i + i2 + i3 + i4
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Find the value of i + i2 + i3 + i4
Evaluate : `("i"^37 + 1/"i"^67)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a + ib = c + id, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`