Advertisements
Advertisements
Question
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
Solution
`("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
= `("i"^6(1 + "i" + "i"^2 + "i"^3))/("i"^2(1 + "i"))`
= `("i"^4(1 + "i" - 1 - "i"))/(1 + "i")` ...[∵ i2 = – 1 and i3 = – i]
= `("i"^4(0))/(1 + "i")`
= 0.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
–i
Find the value of i49 + i68 + i89 + i110
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The value of (2 + i)3 × (2 – i)3 is ______.
Evaluate: (1 + i)6 + (1 – i)3
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the principal value of amplitude of 1 – i?
1 + i2 + i4 + i6 + ... + i2n is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
Which of the following is correct for any two complex numbers z1 and z2?
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`