Advertisements
Advertisements
Question
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
Solution
Given that `(z - 1)/(z + 1)` is purely imaginary number.
Let z = x + yi
∴ `(x + yi - 1)/(x + yi + 1) = ((x - 1) + iy)/((x + 1) + iy)`
= `((x - 1) + iy)/((x + 1) + iy) xx ((x + 1) - iy)/((x + 1) - iy)`
⇒ `((x - 1)(x + 1) - iy(x - 1) + (x + 1)iy - i^2y^2)/((x + 1)^2 - i^2y^2)`
⇒ `(x^2 - 1 + iy(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2) = (x^2 + y^2 - 1 + 2yi)/(x^2 + y^2 + 2x + 1)`
⇒ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1)"i"`
Since, the number is purely imaginary, then real part = 0
∴ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1)` = 0
⇒ x2 + y2 – 1 = 0
⇒ x2 + y2 = 1
⇒ `sqrt(x^2 + y^2)` = 1
∴ |z| = 1
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
–i
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Write the conjugates of the following complex number:
5i
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
Multiplicative inverse of 1 + i is ______.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Which of the following is correct for any two complex numbers z1 and z2?
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`