English

Show that (7+i37-i3+7-i37+i3) is real - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real

Sum

Solution

`((sqrt(7) + sqrt(3)"i")/(sqrt(7) - sqrt(3)"i") + (sqrt(7) - sqrt(3)"i")/(sqrt(7) + sqrt(3)"i"))`

= `[((sqrt(7) + sqrt(3)"i")^2 + (sqrt(7) - sqrt(3)"i")^2)/((sqrt(7) -sqrt(3)"i")(sqrt(7) + sqrt(3)"i"))]`

= `(7 + 2sqrt(21)"i" + 3"i"^2 + 7 - 2sqrt(21)"i" + 3"i"^2)/(7 - 3"i"^2)`

= `(7 + 3(-1) + 7 + 3(-1))/(7 - 3(-1)`   ...[∵ i2 = – 1]

= `(7 - 3 + 7 - 3)/(7 + 3)`

= `8/10`

= `4/5`

which is a real number

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.1 [Page 6]

RELATED QUESTIONS

Find the multiplicative inverse of the complex number:

4 – 3i


If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Write the conjugates of the following complex number:

3 + i


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Answer the following:

Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Answer the following:

Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


What is the principal value of amplitude of 1 – i?


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.


Multiplicative inverse of 1 + i is ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


Which of the following is correct for any two complex numbers z1 and z2?


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×