Advertisements
Advertisements
Question
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
Options
X-axis
Circle with centre (1, 0) and radius 1
Circle with centre (–1, 0) and radius 1
Y-axis
Solution
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on circle with centre (–1, 0) and radius 1.
Explanation:
|z + 1| = 1
⇒ |(x + 1) + iy| = 1
⇒ (x + 1)2 + y2 = 1
Which is a circle with centre (–1, 0) and radius 1.
APPEARS IN
RELATED QUESTIONS
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
(2i3)2
Find the value of i49 + i68 + i89 + i110
Show that 1 + i10 + i100 − i1000 = 0
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Find `|(1 + i) ((2 + i))/((3 + i))|`.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If a + ib = c + id, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.