English

A real value of x satisfies the equation (3-4ix3+4ix) = α − iβ (α, β ∈ R) if α2 + β2 = ______. - Mathematics

Advertisements
Advertisements

Question

A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.

Options

  • 1

  • –1

  • 2

  • –2

MCQ
Fill in the Blanks

Solution

A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = 1.

Explanation:

Given that: `((3 - 4ix)/(3 + 4ix))` = α − iβ

⇒ `((3 - 4ix)/(3 + 4ix) xx (3 - 4ix)/(3 - 4ix))` = α − iβ

⇒ `(9 - 12ix - 12ix + 16i^2 x^2)/(9 - 16i^2 x^2)` = α − iβ 

⇒ `(9 - 24ix - 16x^2)/(9 + 16x^2)` = α − iβ 

⇒ `(9 - 16x^2)/(9 + 16x^2) - (24x)/(9 + 16x^2) i` = α − iβ   .....(i)

⇒ `(9 - 16x^2)/(9 + 16x^2) + (24x)/(9 + 16x^2) i` = α + iβ

Multiplying equation (i) and (ii) we get

⇒ `((9 - 16x^2)/(9 + 16x^2))^2 + ((24x)/(9 + 16x^2))^2` = α2 + β2

⇒ `((9 - 16x^2)^2 + (24x)^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(81 + 256x^4 - 288x^2 + 576x^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(81 + 256x^4 + 288x^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(9 + 16x^2)^2/(9 + 16x^2)^2` = α2 + β2

So, = α2 + β= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 96]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 40 | Page 96

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Solve the following equations for x, y ∈ R:

(x + iy) (5 + 6i) = 2 + 3i


Answer the following:

Evaluate: i131 + i49 


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

The complex number cosθ + isinθ can be zero for some θ.


State true or false for the following:

If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`


Show that `(-1 + sqrt3 i)^3` is a real number.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×