Advertisements
Advertisements
Question
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Options
1
–1
2
–2
Solution
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = 1.
Explanation:
Given that: `((3 - 4ix)/(3 + 4ix))` = α − iβ
⇒ `((3 - 4ix)/(3 + 4ix) xx (3 - 4ix)/(3 - 4ix))` = α − iβ
⇒ `(9 - 12ix - 12ix + 16i^2 x^2)/(9 - 16i^2 x^2)` = α − iβ
⇒ `(9 - 24ix - 16x^2)/(9 + 16x^2)` = α − iβ
⇒ `(9 - 16x^2)/(9 + 16x^2) - (24x)/(9 + 16x^2) i` = α − iβ .....(i)
⇒ `(9 - 16x^2)/(9 + 16x^2) + (24x)/(9 + 16x^2) i` = α + iβ
Multiplying equation (i) and (ii) we get
⇒ `((9 - 16x^2)/(9 + 16x^2))^2 + ((24x)/(9 + 16x^2))^2` = α2 + β2
⇒ `((9 - 16x^2)^2 + (24x)^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(81 + 256x^4 - 288x^2 + 576x^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(81 + 256x^4 + 288x^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(9 + 16x^2)^2/(9 + 16x^2)^2` = α2 + β2
So, = α2 + β2 = 1
APPEARS IN
RELATED QUESTIONS
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`