Advertisements
Advertisements
Question
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Options
True
False
Solution
This statement is True.
Explanation:
Let z = x + yi
Given that: |z – 1| = |z – i|
Then |z + yi – 1| = |x + yi – i|
⇒ `|(x - 1) + yi| = |x - (1 - y)i|`
⇒ `sqrt((x - 1)^2 + y^2) = sqrt(x^2 + (1 - y^2))`
⇒ (x – 1)2 + y2 = x2 + (1 – y)2
⇒ x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ –2x + 2y = 0
⇒ x – y = 0
Which is a straight line.
Slope = 1
Now equation of a line through the point (1, 0) and (0, 1).
y – 0 = `(1 - 0)/(0 - 1) (x - 1)`
⇒ y = –x + 1 whose slope = –1.
Now the multiplication of the slopes of two lines = –1 × 1 = –1
So they are perpendicular.
APPEARS IN
RELATED QUESTIONS
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i49 + i68 + i89 + i110
Show that 1 + i10 + i100 − i1000 = 0
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the principal value of amplitude of 1 – i?
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If |z + 1| = z + 2(1 + i), then find z.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If a + ib = c + id, then ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`