Advertisements
Advertisements
Question
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Solution
x + iy = (a + ib)3
∴ x + iy = a3 + 3a2(ib) + 3a(ib)2 + (ib)3
∴ x + iy = a3 + 3a2bi + 3ab2i2 + b3i3
∴ x + iy = a3 + 3a2bi – 3ab2 – b3i ...[∵ i2 = – 1, i3 = – i]
∴ x + yi = (a3 – 3ab2) + (3a2b – b3)i
Equating the real and imaginary parts separately, we get,
x = a3 – 3ab2 and y = 3a2b – b3
∴ x = a(a2 – 3b2) and y = b(3a2 – b2)
∴ `x/"a"` = a2 – 3b2 and `y/"b"` = 3a2 – b2
∴ `x/"a" + y/"b"` = a2 – 3b2 + 3a2 – b2 = 4a2 – 4b2
∴ `x/"a" + y/"b"` = 4(a2 – b2)
APPEARS IN
RELATED QUESTIONS
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35
Show that `(-1 + sqrt3i)^3` is a real number.