Advertisements
Advertisements
Question
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
Solution
Given that: z + `sqrt(2) |(z + 1)| + i` = 0
Let z = x + yi
∴ `(x + yi) + sqrt(2)|(x + yi + 1)| + i` = 0
⇒ `x + (y + 1)i + sqrt(2)|(x + 1) + yi|` = 0
⇒ `x + (y + 1)i + sqrt(2) sqrt((x + 1)^2 + y^2)` = 0
⇒ `x + (y + 1)i + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0 + 0i
⇒ `x + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0, y + 1 = 0
⇒ x = `- sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` and y = –1
⇒ x2 = 2(x2 + 2x + 1 + y2)
⇒ x2 = 2x2 + 4x + 2 + 2y2
⇒ x2 + 4x + 2 + 2y2 = 0
⇒ x2 + 4x + 2 + 2(–1)2 = 0 .....[∵y = –1]
⇒ x2 + 4x + 4 = 0
⇒ (x + 2)2 = 0
⇒ x + 2 = 0
⇒ x = –2
Hence, z = x + yi = –2 – i.
APPEARS IN
RELATED QUESTIONS
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i + i2 + i3 + i4
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Show that 1 + i10 + i100 − i1000 = 0
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the principal value of amplitude of 1 – i?
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
Solve the equation |z| = z + 1 + 2i.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`