English

Find the complex number satisfying the equation z+2|(z+1)|+i = 0. - Mathematics

Advertisements
Advertisements

Question

Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.

Sum

Solution

Given that: z + `sqrt(2) |(z + 1)| + i` = 0

Let z = x + yi

∴ `(x + yi) + sqrt(2)|(x + yi + 1)| + i` = 0

⇒ `x + (y + 1)i + sqrt(2)|(x + 1) + yi|` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt((x + 1)^2 + y^2)` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0 + 0i

⇒ `x + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0, y + 1 = 0

⇒ x = `- sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` and y = –1

⇒ x2 = 2(x2 + 2x + 1 + y2)

⇒ x2 = 2x2 + 4x + 2 + 2y2

⇒ x2 + 4x + 2 + 2y2 = 0

⇒ x2 + 4x + 2 + 2(–1)2 = 0  .....[∵y = –1]

⇒ x2 + 4x + 4 = 0

⇒ (x + 2)2 = 0

⇒ x + 2 = 0

⇒ x = –2

Hence, z = x + yi = –2 – i.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 22 | Page 92

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the following expression in the form of a + ib.

`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


Find the value of i + i2 + i3 + i4 


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Write the conjugates of the following complex number:

3 + i


Write the conjugates of the following complex number:

`sqrt(5) - "i"`


Find the value of i + i2 + i3 + i4 


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Show that 1 + i10 + i100 − i1000 = 0 


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Answer the following:

Simplify the following and express in the form a + ib:

(2 + 3i)(1 − 4i)


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?


What is the principal value of amplitude of 1 – i?


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


Solve the equation |z| = z + 1 + 2i.


The value of `sqrt(-25) xx sqrt(-9)` is ______.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×