English

Solve the system of equations Re(z2) = 0, z = 2. - Mathematics

Advertisements
Advertisements

Question

Solve the system of equations Re(z2) = 0, z = 2.

Sum

Solution

Given that: Re(z2) = 0, z = 2

Let z = x + yi

∴ |z| = `sqrt(x^2 + y^2)`

⇒ `sqrt(x^2 + y^2)` = 2

⇒ x2 + y2 = 4  .....(i)

Since, z = x + yi

z2 = x2 + y2 i2 + 2xyi

⇒ z2 = x2 – y2 + 2xyi

∴ Re(z2) = x2 – y2

⇒ x2 – y2 = 0  ....(ii)

From equation (i) and (ii), we get

x2 + y2 + x2 − y2 = 4 + 0

⇒ 2x2 = 4

⇒ x2 = 2

⇒ x = `+-  sqrt(2)` and y = `+-  sqrt(2)`

Hence, z = `sqrt(2) +- isqrt(2), -sqrt(2) +- isqrt(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 21 | Page 92

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×