Advertisements
Advertisements
Question
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Solution
sin 120° - i cos 120°
\[ \frac{\sqrt{3}}{2} + \frac{i}{2}\]
\[r = \left| z \right|\]
\[ = \sqrt{\frac{3}{4} + \frac{1}{4}}\]
\[ = 1\]
\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[\text { Then }, \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right|\]
\[ = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \alpha = \frac{\pi}{6}\]
\[\text { Since point } \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \text { lies in the first quadrant, the argument is given by } \]
\[\theta = \alpha = \frac{\pi}{6}\]
\[\text { Polar form } = r\left( \cos\theta + i \sin\theta \right)\]
\[ = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\]
APPEARS IN
RELATED QUESTIONS
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
Solve the system of equations Re(z2) = 0, z = 2.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?