English

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: Sin 120° - I Cos 120° - Mathematics

Advertisements
Advertisements

Question

Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 

Solution

 sin 120° - i cos 120° 

\[ \frac{\sqrt{3}}{2} + \frac{i}{2}\]

\[r = \left| z \right|\]

\[ = \sqrt{\frac{3}{4} + \frac{1}{4}}\]

\[ = 1\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[\text { Then }, \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right|\]

\[ = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \alpha = \frac{\pi}{6}\]

\[\text { Since point } \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \text { lies in the first quadrant, the argument is given by } \]

\[\theta = \alpha = \frac{\pi}{6}\]

\[\text { Polar form } = r\left( \cos\theta + i \sin\theta \right)\]

\[ = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.4 | Q 1.7 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×