English

Solve the equation z2=z¯, where z = x + iy. - Mathematics

Advertisements
Advertisements

Question

Solve the equation `z^2 = barz`, where z = x + iy.

Sum

Solution

`z^2 = barz`

⇒ x– y2 + i2xy = x – iy

Therefore, x2 – y2 = x  ......(1)

And 2xy = –y  ......(2)

From (2), we have y = 0 or x = `- 1/2`

When y = 0, from (1)

We get x2 – x = 0

i.e., x = 0 or x = 1.

When x = `-1/2`, from (1)

We get y2 = `1/4 + 1/2` or y2 = `3/4`.

i.e., y2 = `+- sqrt(3)/2`

Hence, the solutions of the given equation are 0 + i0, 1 + i0, `-1/2 +i sqrt(3)/2`, `-1/2 -i sqrt(3)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Solved Examples [Page 78]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 3 | Page 78

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×