English

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: 1 1 + I - Mathematics

Advertisements
Advertisements

Question

Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]

Solution

\[ \frac{1}{1 + i}\]

\[\text { Rationalising the denominator }: \]

\[\frac{1}{1 + i} \times \frac{1 - i}{1 - i}\]

\[ \Rightarrow \frac{1 - i}{1 - i^2} \]

\[ \Rightarrow \frac{1 - i}{2} \left( \because i^2 = - 1 \right)\]

\[ \Rightarrow \frac{1}{2} - \frac{i}{2}\]

\[r = \left| z \right|\]

\[ = \sqrt{\frac{1}{4} + \frac{1}{4}}\]

\[ = \frac{1}{\sqrt{2}}\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[ \therefore \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{- 1}{2}} \right|\]

\[ = 1 \]

\[ \Rightarrow \alpha = \frac{\pi}{4}\]

\[\text { Since point } \left( \frac{1}{2}, - \frac{1}{2} \right) \text { lies in the fourth quadrant, the argument is given by }\]

\[\theta = - \alpha = \frac{- \pi}{4}\]

\[\text{ Polar form} = r\left( \cos \theta + i\sin \theta \right) \]

\[ = \frac{1}{\sqrt{2}}\left\{ cos\left( \frac{- \pi}{4} \right) + i\sin\left( \frac{- \pi}{4} \right) \right\}\]

\[ = \frac{1}{\sqrt{2}}\left( cos\frac{\pi}{4} - i\sin\frac{\pi}{4} \right)\]

\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.4 | Q 1.5 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×