Advertisements
Advertisements
Question
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Solution
\[ \frac{1}{1 + i}\]
\[\text { Rationalising the denominator }: \]
\[\frac{1}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow \frac{1 - i}{1 - i^2} \]
\[ \Rightarrow \frac{1 - i}{2} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow \frac{1}{2} - \frac{i}{2}\]
\[r = \left| z \right|\]
\[ = \sqrt{\frac{1}{4} + \frac{1}{4}}\]
\[ = \frac{1}{\sqrt{2}}\]
\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[ \therefore \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{- 1}{2}} \right|\]
\[ = 1 \]
\[ \Rightarrow \alpha = \frac{\pi}{4}\]
\[\text { Since point } \left( \frac{1}{2}, - \frac{1}{2} \right) \text { lies in the fourth quadrant, the argument is given by }\]
\[\theta = - \alpha = \frac{- \pi}{4}\]
\[\text{ Polar form} = r\left( \cos \theta + i\sin \theta \right) \]
\[ = \frac{1}{\sqrt{2}}\left\{ cos\left( \frac{- \pi}{4} \right) + i\sin\left( \frac{- \pi}{4} \right) \right\}\]
\[ = \frac{1}{\sqrt{2}}\left( cos\frac{\pi}{4} - i\sin\frac{\pi}{4} \right)\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.