Advertisements
Advertisements
Question
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Solution
\[ \frac{1 + 2i}{1 - 3i}\]
\[\text { Rationalising the denominator }: \]
\[\frac{1 + 2i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}\]
\[ \Rightarrow \frac{1 + 3i + 2i + 6 i^2}{1 - 9 i^2} \]
\[ \Rightarrow \frac{- 5 + 5i}{10} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow \frac{- 1}{2} + \frac{i}{2}\]
\[r = \left| z \right|\]
\[ = \sqrt{\frac{1}{4} + \frac{1}{4}}\]
\[ = \frac{1}{\sqrt{2}}\]
\[\text{ Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[\text {Then }, \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{- 1}{2}} \right|\]
\[ = 1 \]
\[ \Rightarrow \alpha = \frac{\pi}{4}\]
\[\text { Since point } \left( \frac{- 1}{2}, \frac{1}{2} \right) \text { lies in the second quadrant, the argument is given by }\]
\[\theta = \pi - \alpha\]
\[ = \pi - \frac{\pi}{4}\]
\[ = \frac{3\pi}{4}\]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]
\[ = \frac{1}{\sqrt{2}}\left( cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
Solve the equation `z^2 = barz`, where z = x + iy.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
sinx + icos2x and cosx – isin2x are conjugate to each other for ______.
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.