हिंदी

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: 1 + 2 I 1 − 3 I - Mathematics

Advertisements
Advertisements

प्रश्न

Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]

उत्तर

\[ \frac{1 + 2i}{1 - 3i}\]

\[\text { Rationalising the denominator }: \]

\[\frac{1 + 2i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}\]

\[ \Rightarrow \frac{1 + 3i + 2i + 6 i^2}{1 - 9 i^2} \]

\[ \Rightarrow \frac{- 5 + 5i}{10} \left( \because i^2 = - 1 \right)\]

\[ \Rightarrow \frac{- 1}{2} + \frac{i}{2}\]

\[r = \left| z \right|\]

\[ = \sqrt{\frac{1}{4} + \frac{1}{4}}\]

\[ = \frac{1}{\sqrt{2}}\]

\[\text{ Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[\text {Then }, \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{- 1}{2}} \right|\]

\[ = 1 \]

\[ \Rightarrow \alpha = \frac{\pi}{4}\]

\[\text { Since point } \left( \frac{- 1}{2}, \frac{1}{2} \right) \text { lies in the second quadrant, the argument is given by }\]

\[\theta = \pi - \alpha\]

\[ = \pi - \frac{\pi}{4}\]

\[ = \frac{3\pi}{4}\]

\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]

\[ = \frac{1}{\sqrt{2}}\left( cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.4 | Q 1.6 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×