हिंदी

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: − 16 1 + I √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]

उत्तर

\[ \frac{- 16}{1 + i\sqrt{3}}\]

\[\text { Rationalising the denominator }: \]

\[\frac{- 16}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]

\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{1 - 3 i^2} \]

\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{4} \left( \because i^2 = - 1 \right)\]

\[ \Rightarrow - 4 + 4\sqrt{3}i\]

\[r = \left| z \right|\]

\[ = \sqrt{16 + 48}\]

\[ = 8\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[\text { Then }, \tan \alpha = \left| \frac{4\sqrt{3}}{- 4} \right|\]

\[ = \sqrt{3} \]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

\[\text { Since the point } \left( - 4, 4\sqrt{3} \right)\text {  lies in the third quadrant, the argument is given by }\]

\[ \theta = \pi - \alpha\]

\[ = \pi - \frac{\pi}{3}\]

\[ = \frac{2\pi}{3}\]

\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]

                            \[ = 8\left\{ cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right\}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.4 | Q 1.8 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×