Advertisements
Advertisements
प्रश्न
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
उत्तर
\[\frac{1 - i}{1 + i}\]
\[\text { Rationalising the denominator }: \]
\[\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow \frac{1 + i^2 - 2i}{1 - i^2} \]
\[ \Rightarrow \frac{- 2 i}{2} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow - i\]
\[r = \left| z \right|\]
\[ = \sqrt{0 + 1}\]
\[ = 1\]
\[\text { Since point } (0, - 1) \text { lies on the negative direction of the imaginary axis, the argument of z is given by } \frac{3\pi}{2} . \]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right)\]
\[ = \left( cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} \right)\]
\[ = \left\{ cos\left( 2\pi - \frac{\pi}{2} \right) + i\sin\left( 2\pi - \frac{\pi}{2} \right) \right\}\]
\[ = \left( \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
Solve the equation `z^2 = barz`, where z = x + iy.
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.