Advertisements
Advertisements
प्रश्न
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
उत्तर
\[\frac{1 - i}{1 + i}\]
\[\text { Rationalising the denominator }: \]
\[\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow \frac{1 + i^2 - 2i}{1 - i^2} \]
\[ \Rightarrow \frac{- 2 i}{2} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow - i\]
\[r = \left| z \right|\]
\[ = \sqrt{0 + 1}\]
\[ = 1\]
\[\text { Since point } (0, - 1) \text { lies on the negative direction of the imaginary axis, the argument of z is given by } \frac{3\pi}{2} . \]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right)\]
\[ = \left( cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} \right)\]
\[ = \left\{ cos\left( 2\pi - \frac{\pi}{2} \right) + i\sin\left( 2\pi - \frac{\pi}{2} \right) \right\}\]
\[ = \left( \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.