मराठी

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: 1 − I 1 + I - Mathematics

Advertisements
Advertisements

प्रश्न

Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]

उत्तर

\[\frac{1 - i}{1 + i}\]

\[\text { Rationalising the denominator }: \]

\[\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]

\[ \Rightarrow \frac{1 + i^2 - 2i}{1 - i^2} \]

\[ \Rightarrow \frac{- 2 i}{2} \left( \because i^2 = - 1 \right)\]

\[ \Rightarrow - i\]

\[r = \left| z \right|\]

\[ = \sqrt{0 + 1}\]

\[ = 1\]

\[\text { Since point } (0, - 1) \text { lies on the negative direction of the imaginary axis, the argument of z is given by } \frac{3\pi}{2} . \]

\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right)\]

\[ = \left( cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} \right)\]

\[ = \left\{ cos\left( 2\pi - \frac{\pi}{2} \right) + i\sin\left( 2\pi - \frac{\pi}{2} \right) \right\}\]

\[ = \left( \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.4 | Q 1.4 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×