Advertisements
Advertisements
प्रश्न
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.
पर्याय
x > y > 0
x < y < 0
y < x < 0
y > x > 0
उत्तर
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if x < y < 0.
Explanation:
Given that: z = x + iy
If z lies in third quadrant.
So x < 0 and y < 0.
`barz` = x – iy
`barz/z = (x - iy)/(x + iy)`
= `(x - iy)/(x + iy) xx (x - iy)/(x -iy)`
= `(x^2 + i^2y^2 - 2xyi)/(x^2 - i^2y^2)`
= `(x^2 - y^2 - 2xyi)/(x^2 + y^2)`
= `(x^2 - y^2)/(x^2 + y^2) - (2xy)/(x^2 + y^2) i`
When z lies in third quadrant then `barz/z` will also be lie in third quadrant.
∴ `(x^2 - y^2)/(x^2 + y^2) < 0` and `(-2xy)/(x^2 + y^2) < 0`
⇒ x2 – y2 < 0 and 2xy > 0
⇒ x2 < y2 and xy > 0
So x < y < 0.
APPEARS IN
संबंधित प्रश्न
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
What is the conjugate of `(2 - i)/(1 - 2i)^2`?