मराठी

If z = x + iy lies in the third quadrant, then z¯z also lies in the third quadrant if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 

पर्याय

  • x > y > 0

  • x < y < 0

  • y < x < 0

  • y > x > 0

MCQ
रिकाम्या जागा भरा

उत्तर

If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if x < y < 0

Explanation:

Given that: z = x + iy

If z lies in third quadrant.

So x < 0 and y < 0.

`barz` = x – iy

`barz/z = (x - iy)/(x + iy)`

= `(x - iy)/(x + iy) xx (x - iy)/(x -iy)`

= `(x^2 + i^2y^2 - 2xyi)/(x^2 - i^2y^2)`

= `(x^2 - y^2 - 2xyi)/(x^2 + y^2)`

= `(x^2 - y^2)/(x^2 + y^2) - (2xy)/(x^2 + y^2) i`

When z lies in third quadrant then `barz/z` will also be lie in third quadrant.

∴ `(x^2 - y^2)/(x^2 + y^2) < 0` and `(-2xy)/(x^2 + y^2) < 0`

⇒ x2 – y2 < 0 and 2xy > 0

⇒ x2 < y2 and xy > 0

So x < y < 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 37 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×