मराठी

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: Sin 120° - I Cos 120° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 

उत्तर

 sin 120° - i cos 120° 

\[ \frac{\sqrt{3}}{2} + \frac{i}{2}\]

\[r = \left| z \right|\]

\[ = \sqrt{\frac{3}{4} + \frac{1}{4}}\]

\[ = 1\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[\text { Then }, \tan \alpha = \left| \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right|\]

\[ = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \alpha = \frac{\pi}{6}\]

\[\text { Since point } \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \text { lies in the first quadrant, the argument is given by } \]

\[\theta = \alpha = \frac{\pi}{6}\]

\[\text { Polar form } = r\left( \cos\theta + i \sin\theta \right)\]

\[ = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.4 | Q 1.7 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×