Advertisements
Advertisements
प्रश्न
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
पर्याय
0
1
100
none of these
उत्तर
100
\[\because x + iy = (1 + i)(1 + 2i)(1 + 3i)\]
\[\text { Taking modulus on both the sides }: \]
\[\left| x + iy \right| = \left| (1 + i)(1 + 2i)(1 + 3i) \right|\]
\[ \Rightarrow \left| x + iy \right| = \left| 1 + i \right| \times \left| 1 + 2i \right| \times \left| 1 + 3i \right|\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2}\sqrt{1^2 + 2^2}\sqrt{1^2 + 3^2}\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{2}\sqrt{5}\sqrt{10} \]
\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{100}\]
\[\text { Squaring both the sides }, \]
\[ \Rightarrow x^2 + y^2 = 100\]
APPEARS IN
संबंधित प्रश्न
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?