Advertisements
Advertisements
प्रश्न
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
पर्याय
\[2 \sin\frac{\theta}{2}\]
\[2 \cos\frac{\theta}{2}\]
\[2\left| \sin\frac{\theta}{2} \right|\]
\[2\left| \cos\frac{\theta}{2} \right|\]
उत्तर
\[2\left| \sin\frac{\theta}{2} \right|\]
\[\because z = 1 - \cos\theta + i \sin\theta\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \cos\theta \right)^2 + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 - 2\cos\theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 - \cos\theta \right)}\]
\[ \Rightarrow \left| z \right| = \sqrt{4 \sin^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right|=2\left| \sin\frac{\theta}{2} \right|\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.