Advertisements
Advertisements
प्रश्न
Find the multiplicative inverse of the following complex number:
1 − i
उत्तर
\[\text{ Let} z = 1 - i . \text { Then} , \]
\[\frac{1}{z} = \frac{1}{1 - i}\]
\[ = \frac{1}{1 - i} \times \frac{1 + i}{1 + i}\]
\[ = \frac{1 + i}{1 - i^2}\]
\[ = \frac{1}{2}\left( 1 + i \right)\]
\[ = \frac{1}{2} + \frac{1}{2}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
i457
Evaluate the following:
(ii) i528
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The amplitude of \[\frac{1}{i}\] is equal to
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i93
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.