मराठी

If a = Cos θ + I Sin θ, Then 1 + a 1 − a = - Mathematics

Advertisements
Advertisements

प्रश्न

If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]

पर्याय

  • \[\cot\frac{\theta}{2}\]

  • cot θ

  • \[i \cot\frac{\theta}{2}\]

  • \[i \tan\frac{\theta}{2}\]

MCQ

उत्तर

\[i \cot\frac{\theta}{2}\]

\[a = \cos\theta + i\sin\theta \left( \text { given } \right)\]

\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]

\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{\left( 1 + i\sin\theta \right)^2 - \cos^2 \theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \sin^2 \theta + 2i\sin\theta - \cos^2 \theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \left( \sin^2 \theta + \cos^2 \theta \right) + 2i\sin\theta}{1 + \left( \sin^2 \theta + \cos^2 \theta \right) - 2\cos\theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{2i\sin\theta}{2(1 - \cos\theta)}\]

\[\Rightarrow $\frac{1 + a}{1 - a} =\frac{2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}\]

\[\Rightarrow \frac{1 + a}{1 - a}=i \cot\frac{\theta}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 9 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[(1 + i )^4 + (1 - i )^4\] is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Evaluate the following : i35 


Evaluate the following : i116 


Evaluate the following : i403 


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×